

May 2002 Revised May 2002

74LCXH16245

Low Voltage 16-Bit Bidirectional Transceiver with Bushold

General Description

The LCXH16245 contains sixteen non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus oriented applications. The device is designed for low voltage (2.5V or 3.3V) $V_{\rm CC}$ applications with capability of interfacing to a 5V signal environment. The device is byte controlled. Each byte has separate control inputs which could be shorted together for full 16-bit operation. The T/\overline{R} inputs determine the direction of data flow through the device. The $\overline{\rm OE}$ inputs disable both the A and B Ports by placing them in a high impedance state.

The LCXH16245 data inputs include active bushold circuitry, eliminating the need for external pull-up resistors to hold unused or floating data inputs at a valid logic level.

The LCXH16245 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

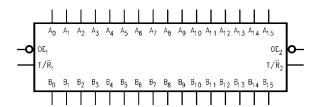
Features

- 2.3V-3.6V V_{CC} specifications provided
- 4.5 ns t_{PD} max ($V_{CC} = 3.3V$), 20 μ A I_{CC} max
- Power-down high impedance outputs
- Bushold on inputs eliminates the need for external pull-up/pull-down resistors
- \blacksquare ±24 mA output drive (V_{CC} = 3.0V)
- Implements patented noise/EMI reduction circuitry
- Latch-up performance conforms to the requirements of JESD78
- ESD performance:

Human body model > 2000V

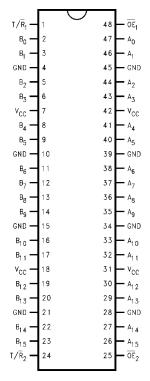
Machine model > 200V

Also packaged in plastic Fine-Pitch Ball Grid Array (FBGA)

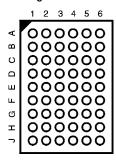

Ordering Code:

Order Number	Package Number	Package Description
74LCXH16245G (Note 1) (Note 2)	BGA54A	54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide
74LCXH16245MTD (Note 2)	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Note 1: Ordering Code "G" indicates Trays.


Note 2: Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol



Connection Diagrams

Pin Assignment for SSOP and TSSOP

Pin Assignment for FBGA

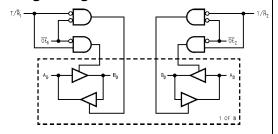
(Top Thru View)

Pin Descriptions

Pin Names	Description		
OE _n	Output Enable Input		
T/R _n	Transmit/Receive Input		
A ₀ -A ₁₅ B ₀ -B ₁₅	Side A Inputs or 3-STATE Outputs (Bushold)		
B ₀ -B ₁₅	Side B Inputs or 3-STATE Outputs (Bushold)		

FBGA Pin Assignments

	1	2	3	4	5	6
Α	B ₀	NC	T/R ₁	OE ₁	NC	A ₀
В	B ₂	B ₁	NC	NC	A ₁	A ₂
С	B ₄	B ₃	V _{CC}	V _{CC}	A ₃	A ₄
D	B ₆	B ₅	GND	GND	A ₅	A ₆
E	B ₈	B ₇	GND	GND	A ₇	A ₈
F	B ₁₀	B ₉	GND	GND	A ₉	A ₁₀
G	B ₁₂	B ₁₁	V _{CC}	V _{CC}	A ₁₁	A ₁₂
Н	B ₁₄	B ₁₃	NC	NC	A ₁₃	A ₁₄
J	B ₁₅	NC	T/R ₂	OE ₂	NC	A ₁₅


Truth Tables

Inp	outs	Outrot
OE ₁	T/R ₁	Outputs
L	L	Bus B ₀ –B ₇ Data to Bus A ₀ –A ₇
L	Н	Bus A ₀ -A ₇ Data to Bus B ₀ -B ₇
Н	Х	HIGH Z State on A ₀ -A ₇ , B ₀ -B ₇

Inputs		Outrost -	
OE ₂	T/R ₂	Outputs	
L	L	Bus B ₈ –B ₁₅ Data to Bus A ₈ –A ₁₅	
L	Н	Bus B_8-B_{15} Data to Bus A_8-A_{15} Bus A_8-A_{15} Data to Bus B_8-B_{15}	
Н	Χ	HIGH Z State on A ₈ -A ₁₅ , B ₈ -B ₁₅	

H = HIGH Voltage Level

Logic Diagram

L = LOW Voltage Level

X = Immaterial Z = High Impedance

Absolute Maximum Ratings(Note 3) Symbol Parameter Value Conditions Units ٧ Supply Voltage -0.5 to +7.0 V_{CC} ٧ DC Input Voltage -0.5 to $V_{CC} + 0.5$ V_{I} DC Output Voltage Output in 3-STATE Vo -0.5 to +7.0 ٧ -0.5 to $V_{CC} + 0.5$ Output in HIGH or LOW State (Note 4) DC Input Diode Current -50 V_I < GND mΑ I_{IK} DC Output Diode Current -50 V_O < GND mΑ +50 $V_O > V_{CC}$ DC Output Source/Sink Current ±50 mΑ lο I_{CC} DC Supply Current per Supply Pin ±100 mΑ DC Ground Current per Ground Pin ±100 mΑ I_{GND} Storage Temperature -65 to +150 °C $\mathsf{T}_{\mathsf{STG}}$

Recommended Operating Conditions (Note 5)

Symbol	Parameter		Min	Max	Units
V _{CC}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	V
V _I	Input Voltage		0	V _{CC}	V
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE	0	V_{CC}	V
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$ $V_{CC} = 2.7V - 3.0V$ $V_{CC} = 2.3V - 2.7V$		±24	
		$V_{CC} = 2.7V - 3.0V$		±12	mA
		$V_{CC} = 2.3V - 2.7V$		±8	
T _A	Free-Air Operating Temperature		-40	85	°C
Δt/ΔV	Input Edge Rate, $V_{IN} = 0.8V-2.0V$, $V_{CC} = 3.0V$		0	10	ns/V

Note 3: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 4: I_O Absolute Maximum Rating must be observed.

Note 5: Floating or unused control inputs must be HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter		Conditions	V _{CC}	T _A = -40°C	to +85°C	Units
	Farameter		Conditions	(V)	Min	Max	Ullits
V _{IH}	HIGH Level Input Voltage			2.3 – 2.7	1.7		V
				2.7 – 3.6	2.0		V
V _{IL}	LOW Level Input Voltage			2.3 – 2.7		0.7	V
				2.7 – 3.6		0.8	V
V _{OH}	HIGH Level Output Voltage		$I_{OH} = -100 \mu A$	2.3 – 3.6	V _{CC} - 0.2		
			$I_{OH} = -8 \text{ mA}$	2.3	1.8		
			I _{OH} = -12 mA	2.7	2.2		V
			$I_{OH} = -18 \text{ mA}$	3.0	2.4		
			I _{OH} = -24 mA	3.0	2.2		
V _{OL}	LOW Level Output Voltage		$I_{OL} = 100 \mu A$	2.3 – 3.6		0.2	
			I _{OL} = 8mA	2.3		0.6	
			I _{OL} = 12 mA	2.7		0.4	V
			I _{OL} = 16 mA	3.0		0.4	
			I _{OL} = 24 mA	3.0		0.55	
I _I	Input Leakage Current	Data	$V_I = V_{CC}$ or GND	2.3 – 3.6		±5.0	^
		Control	O ≤ V _I ≤ 5.5	2.3 - 3.6		±5.0	μΑ

DC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	V _{CC}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units
		Conditions	(V)	Min	Max	Oillis
I _{I(HOLD)}	Bushold Input Minimum	V _{IN} = 0.7V	2.3	45		
	Drive Hold Current	$V_{IN} = 1.7V$	2.3	-45		μА
		$V_{IN} = 0.8V$	3.0	75		μΛ
		V _{IN} = 2.0V	3.0	-75		
I _{I(OD)}	Bushold Input Over-Drive	(Note 6)	2.7	300		
	Current to Change State	(Note 7)	2.7	-300		μА
		(Note 6)	3.6	450		μΛ
		(Note 7)	3.0	-450		
I _{OZ}	3-STATE I/O Leakage	$V_O = V_{CC}$ or GND	2.3 – 3.6		±5.0	μА
I _{OFF}	Power-Off Leakage Current	V_I or $V_O = 5.5V$	0		10	μΑ
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3–3.6		20	μА
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.3-3.6		500	μА

Note 6: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 7: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

AC Electrical Characteristics

			T _A	=-40°C to +	85°C, R _L = 50	00Ω		
Symbol	Parameter	V _{CC} = 3.3	3V ± 0.3V	V _{CC} = 2.7V		$\rm V_{CC}=2.5V\pm0.2V$		Units
Syllibol	Farameter	C _L =	50 pF	C _L =	50 pF	C _L =	30 pF	Units
		Min	Max	Min	Max	Min	Max	
t _{PHL}	Propagation Delay	1.0	4.5	1.0	5.2	1.0	5.4	no
t _{PLH}	A _n to B _n or B _n to A _n	1.0	4.5	1.0	5.2	1.0	5.4	ns
t _{PZL}	Output Enable Time	1.0	6.5	1.0	7.2	1.0	8.5	ns
t _{PZH}		1.0	6.5	1.0	7.2	1.0	8.5	115
t _{PLZ}	Output Disable Time	1.0	6.4	1.0	6.9	1.0	7.7	ns
t _{PHZ}		1.0	6.4	1.0	6.9	1.0	7.7	115
t _{OSHL}	Output to Output Skew (Note 8)		1.0					ns
toslh			1.0					113

Note 8: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V _{CC} (V)	T _A = 25°C	Units
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3V, V_{IL} = 0V$	3.3	0.8	V
		$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	0.6	V
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.8	V
		$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	-0.6	V

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	V_{CC} = Open, V_I = 0V or V_{CC}	7	pF
C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_{I} = 0V$ or V_{CC} , $f = 10$ MHz	20	pF

AC LOADING and WAVEFORMS Generic for LCX Family

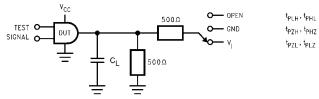
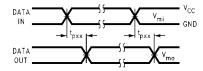
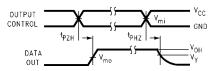
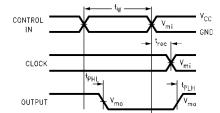
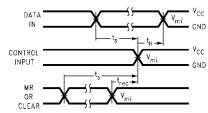
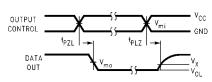




FIGURE 1. AC Test Circuit (C_L includes probe and jig capacitance)


Test	Switch
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6V at V_{CC} = 3.3 \pm 0.3V, 2.7V and V_{CC} x 2 at V_{CC} = 2.5 \pm 0.2V
t _{PZH} , t _{PHZ}	GND


Waveform for Inverting and Non-Inverting Functions


3-STATE Output High Enable and Disable Times for Logic

Propagation Delay. Pulse Width and t_{rec} Waveforms

Setup Time, Hold Time and Recovery Time for Logic

3-STATE Output Low Enable and Disable Times for Logic

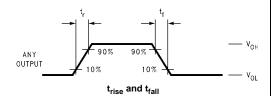
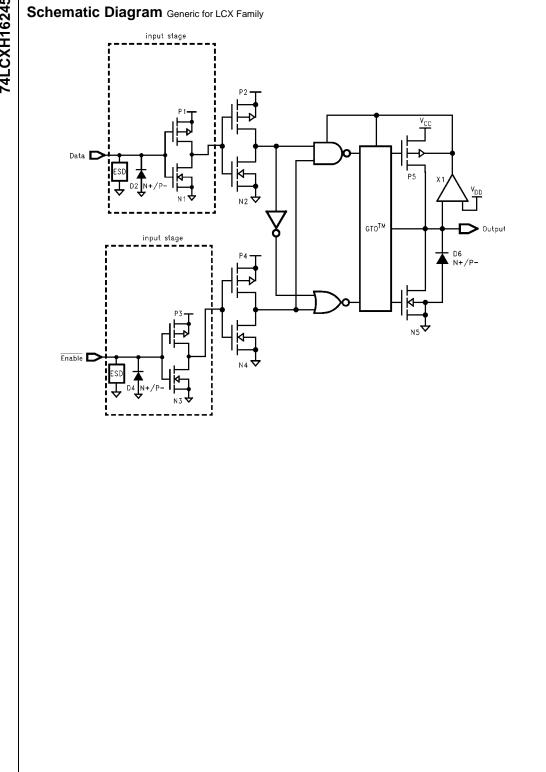
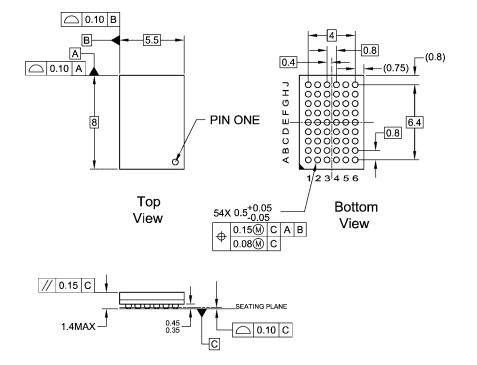




FIGURE 2. Waveforms (Input Characteristics; f =1MHz, $t_r = t_f = 3ns$)

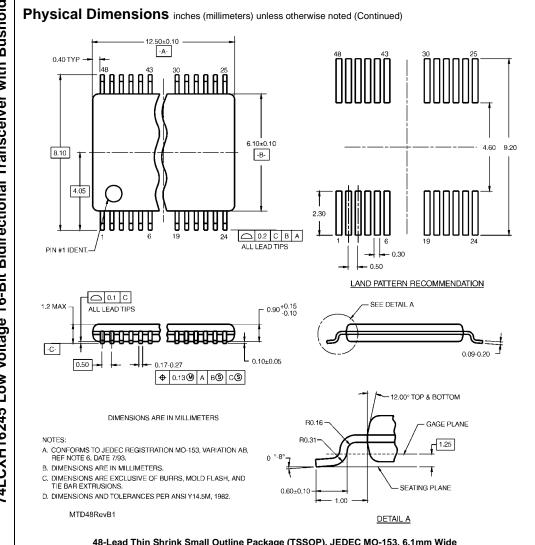
Symbol	V _{cc}		
	$3.3V \pm 0.3V$	2.7V	2.5V ± 0.2V
V _{mi}	1.5V	1.5V	V _{CC} /2
V_{mo}	1.5V	1.5V	V _{CC} /2
V _x	V _{OL} + 0.3V	V _{OL} + 0.3V	V _{OL} + 0.15V
٧.,	V _{OH} – 0.3V	V _{OH} – 0.3V	V _{OH} - 0.15V

Physical Dimensions inches (millimeters) unless otherwise noted

NOTES:

- A. THIS PACKAGE CONFORMS TO JEDEC M0-205
- A. THIS PACKAGE CONFORMS TO JEDEC MU-205

 B. ALL DIMENSIONS IN MILLIMETERS


 C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)

 .35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS

 D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA54ArevD

54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide Package Number BGA54A

48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD48

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com